On conformal fields of a Randers metric with isotropic $S$-curvature
نویسندگان
چکیده
منابع مشابه
Vanishing S-curvature of Randers spaces
We give a necessary and sufficient condition on a Randers space for the existence of a measure for which Shen’s S-curvature vanishes everywhere. Moreover, such a measure coincides with the Busemann-Hausdorff measure up to a constant multiplication.
متن کاملon a class of locally dually flat finsler metrics with isotropic s-curvature
dually flat finsler metrics form a special and valuable class of finsler metrics in finsler information geometry,which play a very important role in studying flat finsler information structure. in this paper, we prove that everylocally dually flat generalized randers metric with isotropic s-curvature is locally minkowskian.
متن کاملconformal vector fields on tangent bundle with a special lift finsler metric*
on a finsler manifold, we define conformal vector fields and their complete lifts and prove that incertain conditions they are homothetic.
متن کاملOn Randers metrics of reversible projective Ricci curvature
projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf
متن کاملConformal Deformation of a Riemannian Metric to Constant Scalar Curvature
A well-known open question in differential geometry is the question of whether a given compact Riemannian manifold is necessarily conformally equivalent to one of constant scalar curvature. This problem is known as the Yamabe problem because it was formulated by Yamabe [8] in 1960, While Yamabe's paper claimed to solve the problem in the affirmative, it was found by N. Trudinger [6] in 1968 tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2013
ISSN: 0019-2082
DOI: 10.1215/ijm/1415023506